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Abstract. A systematic study of ground-state properties of the three-dimensional Falicov-Kimball model is
performed by a well-controlled numerical method. The results obtained are used to categorize the ground-
state configurations according to common features for weak, intermediate and strong interactions. It is
shown that only a few configuration types form the basic structure of the phase diagram. In particular,
the largest regions of stability correspond to phase segregated configurations, striped configurations and
configurations in which electrons are distributed in diagonal planes with incomplete chessboard structure.
Near half-filling, mixtures of two phases with complete and incomplete chessboard structure are determined.
The relevance of these results for a description of real materials is discussed.

PACS. 75.10.Lp Band and itinerant models – 71.27.+a Strongly correlated electron systems; heavy
fermions – 71.28.+d Narrow-band systems; intermediate-valence solids – 71.30.+h Metal-insulator
transitions and other electronic transitions

1 Introduction

The Falicov-Kimball model (FKM) has become, since its
introduction [1] in 1969, one of the most popular examples
of a system of interacting electrons with short-range inter-
actions. It has been used in the literature to study a great
variety of many-body effects in rare-earth compounds,
of which metal-insulator transitions, mixed-valence phe-
nomena, and charge-density waves are the most common
examples [2]. The model is based on the coexistence of
two different types of electronic states in a given mate-
rial: localized, highly correlated ionic-like states and ex-
tended, uncorrelated, Bloch-like states. It is generally ac-
cepted that the above mentioned cooperative phenomena
result from a change in the occupation numbers of these
electronic states, which remain themselves basically un-
changed in their character. Taking into account only the
intra-atomic Coulomb interaction between the two types
of states, the Hamiltonian of the spinless FKM can be
written as the sum of three terms:

H =
∑

ij

tijd
+
i dj + U

∑

i

f+
i fid

+
i di + Ef

∑

i

f+
i fi, (1)

where f+
i , fi are the creation and annihilation operators

for an electron in the localized state at lattice site i with
binding energy Ef and d+

i , di are the creation and anni-
hilation operators of the itinerant spinless electrons in the
d-band Wannier state at site i.
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The first term of (1) is the kinetic energy correspond-
ing to quantum-mechanical hopping of the itinerant d elec-
trons between sites i and j. These intersite hopping tran-
sitions are described by the matrix elements tij , which
are −t if i and j are the nearest neighbours and zero
otherwise (in the following all parameters are measured
in units of t). The second term represents the on-site
Coulomb interaction between the d-band electrons with
density nd = Nd/L = 1

L

∑
i d+

i di and the localized f elec-
trons with density nf = Nf/L = 1

L

∑
i f+

i fi, where L is
the number of lattice sites. The third term stands for the
localized f electrons whose sharp energy level is Ef .

Since in this spinless version of the FKM without hy-
bridization the f -electron occupation number f+

i fi of each
site i commutes with the Hamiltonian (1), the f -electron
occupation number is a good quantum number, taking
only two values: wi = 1 or 0, according to whether or not
the site i is occupied by the localized f electron.

Now the Hamiltonian (1) can be written as

H =
∑

ij

hijd
+
i dj + Ef

∑

i

wi, (2)

where hij(w) = tij + Uwiδij .
Thus for a given f -electron configuration w =

{w1, w2 . . . wL} defined on the three-dimensional lattice
with periodic boundary conditions, the Hamiltonian (2) is
the second-quantized version of the single-particle Hamil-
tonian h(w) = T + UW , so the investigation of the model
(2) is reduced to the investigation of the spectrum of h for
different configurations of f electrons.
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Despite its relative simplicity and an impressive re-
search activity in the past, the properties of this model
remained unclear for a long time. The crucial break in
this direction has been done recently by exact analyti-
cal [3–5] and numerical [6,7] calculations. These calcula-
tions showed that the spinless FKM can describe (at least
qualitatively) such important phenomena observed exper-
imentally in some rare-earth and transition metal com-
pounds like the discontinuous valence and metal insulator
transitions, phase separation, charge ordering, stripes for-
mation, etc. In addition, it was found [8] that at non-zero
temperatures the model is able to provide the qualitative
explanation for the anomalous large values of the specific
heat coefficient and for the extremely large changes of the
electrical conductivity found in some intermediate valence
compounds (e.g., in SmB6). These results indicate that the
spinless FKM, in spite of its simplicity, could be a conve-
nient microscopic model for a description of ground-state,
thermodynamic and transport properties of real materi-
als. However, real materials are usually three dimensional
while the most of above mentioned results have been ob-
tained for the limiting cases of D = 1, D = 2 and D = ∞.
Thus one can ask if these results, or at least some of them
hold also in three dimensions. This is the question that we
would like to answer in this paper. Here we focus our at-
tention on the ground-state properties of model. The spe-
cial attention is devoted to examine the three dimensional
analogs of phase segregation, charge ordering, stripes for-
mation and metal-insulator transitions observed in D = 1
and D = 2. From this point of view the paper represents
the first attempt to describe systematically the ground-
state properties of the FKM in three dimensions. To at-
tain this goal we use a well-controlled numerical method
that we have elaborated recently [9]. The method is based
on the simple modification of the exact diagonalization
method on finite clusters and consists of following steps.
(i) Chose a trial configuration w = {w1, w2 . . . wL}. (ii)
Having w, U and Ef fixed, find all eigenvalues λk of
h(w) = T + UW . (iii) For a given Nf =

∑
i wi deter-

mine the ground-state energy E(w) =
∑L−Nf

k=1 λk + EfNf

of a particular f -electron configuration w by filling in the
lowest Nd = L − Nf one-electron levels (here we con-
sider only the case Nf + Nd = L, which is the point of
the special interest for valence and metal-insulator tran-
sitions caused by promotion of electrons from localized f
orbitals (fn → fn−1) to the conduction band states). (iv)
Generate a new configuration w′ by moving a randomly
chosen electron to a new position which is chosen also as
random. (v) Calculate the ground-state energy E(w′). If
E(w′) < E(w) the new configuration is accepted, other-
wise w′ is rejected. Then the steps (ii)-(v) are repeated
until the convergence (for given U and Ef ) is reached.
Of course, one can move instead of one electron (in step
(iv)) simultaneously two or more electrons, thereby the
convergence of method is improved. Indeed, tests that we
have performed for a wide range of the model parameters
showed that the latter implementation of the method, in
which 1 < p < pmax electrons (p should be chosen at ran-
dom) are moved to new positions overcomes better the

local minima of the ground state energy. In this paper
we perform calculations with pmax = Nf . The main ad-
vantage of this implementation is that in any iteration
step the system has a chance to lower its energy (even
if it is in a local minimum), thereby the problem of lo-
cal minima is strongly reduced (in principle, the method
becomes exact if the number of iteration steps goes to in-
finity). On the other hand a disadvantage of this selection
is that the method converges slower than for pmax = 2 and
pmax = 3. To speed up the convergence of the method (for
pmax = Nf ) and still to hold its advantage we generate
instead the random number p (in step (iv)) the pseudo-
random number p that probability of choosing decreases
(according to the power law) with increasing p. Such a
modification improves considerably the convergence of the
method. Repeating this procedure for different values of
Ef and U one can immediately study the dependence of
the f -electron occupation number Nf =

∑
i wmin

i on the
f -level position Ef (valence transitions) or the phase dia-
gram of the model in the nf −U plane. This method was
first used in our recent paper [9] to study the ground-state
properties of the one and two-dimensional FKM. It was
found that for small and intermediate clusters, where the
exact numerical solution is possible (L ∼ 30), the method
is able to reproduce exactly the ground states of the spin-
less FKM, even after relative small number of iterations
(typically 10000 per site).

2 Results and discussion

To examine ground-state properties of the spinless FKM
in three dimensions we have performed an exhaustive nu-
merical study of the model for weak (U = 1), intermedi-
ate (U = 2) and strong (U = 8) interactions. For each
selected value of U and Nf (Nf = 0, 1, .., L) the ground-
state configuration wmin is determined by the above de-
scribed method (we remember that the total filling is fixed
at 1). To reveal the finite-size effects numerical calcula-
tions were done on two different clusters of 4 × 4 × 4 and
6 × 6 × 6 sites. A direct comparison of numerical results
obtained on 4 × 4 × 4 and 6 × 6 × 6 clusters showed that
the ground-state configurations fall into several different
categories which stability regions are practically indepen-
dent of L. Let us start a discussion of our results with a
description of these configuration types for different val-
ues of U and Nf (in the remainder of the paper the values
of Nf always correspond to 6 × 6 × 6 cluster).

The largest number of configuration types is observed
in the weak-coupling limit. Going with Nf from zero to
half-filling (Nf = L/2) we have observed the following
configuration types for U = 1. At low f -electron concen-
trations the ground-states are the phase segregated con-
figurations (f -electrons clump together while remaining
part of lattice is free of f -electrons) listed in Figure 1a for
two selected values of Nf . Since the ground-states corre-
sponding to the segregated configurations are metallic [10]
we arrive at an important conclusion, and namely, that
the metallic domain that exists in the one and two di-
mensional FKM persists also in three dimensions. In the
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Fig. 1. Typical examples of phase segregated (a) and striped (b) configurations obtained for U = 1 and L = 6 × 6 × 6. Large
dots: occupied sites; small dots: vacant sites.

one dimensional case the region of stability of this metal-
lic domain was restricted to low f -electron concentrations
nf < 1/4 and small Coulomb interactions U ≤ 1 [9,10].
The numerical calculations performed in two dimensions
revealed [9] that with increasing dimension the stability
region of this metallic domain shifts to higher values of
U (U ∼ 3). From this point of view it is interesting to
examine if this trend holds also for three dimensions. To
verify this conjecture we have determined the ground-state
configurations for increasing U at low f -electron concen-
trations on 4 × 4 × 4, 6 × 6 × 6 and 8 × 8 × 8 clusters.
We have found that the metallic region in D = 3 ex-
tends up to U ∼ 5, what confirms the trend conjectured
from two dimensional calculations (in addition, in accor-
dance with two-dimensional results we have found that
the critical value of Uc decreases with increasing nf ). It
should be noted that this result is crucial for description
of insulator-metal transitions in real materials (like rare-
earth and transition metal compounds). In these materials
the values of the interaction constant U are much larger
than the values of hopping integrals tij [1], and thus for the
correct description of valence and metal-insulator transi-
tions in these compounds one has to take the limit U > t
and not U < t. On the other hand it should be men-
tioned that in the Falicov-Kimball picture it is possible
to get the metal-insulator transition much easier, for ex-
ample by including spins. Indeed, numerical calculations

performed for the spin-one-half FKM showed [11] that the
metallic domain is stable in this model for a wide range
of model parameters, including large values of U and nf .
Above the region of phase segregation we have observed
the region of stripes formation (Nf = 10, .., 20). In this
region the f -electrons form the one-dimensional charge
lines (stripes) that can be perpendicular or parallel (see
Fig. 1b). This result shows that the crucial mechanism
leading to the stripes formation in strongly correlated
systems should be the competition between the kinetic
and short-range Coulomb interaction. Going with Nf to
higher values of Nf the stripes vanish and again appear
at Nf = 26, however in a fully different distribution (see
Fig. 2a). While at smaller values of Nf the stripes have
been distributed inhomogeneously (only over one half of
lattice) the stripes in the region Nf = 26, .., 31 are dis-
tributed regularly. Above this region a new type of config-
urations (see Fig. 2b) starts to develop. We call them the
diagonal charge planes with incomplete chessboard struc-
ture, since the f -electrons prefer to occupy the diagonal
planes with slope 1 and within these planes they form the
chessboard structure. Of course, there is a considerable
freedom in categorization of ground state configurations
according to some common features and the case of diag-
onal planes used by us is only one of possible ways. The
region of diagonal charge planes is relatively broad and
extends up to Nf ∼ 50. Then follows the region in which
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Fig. 2. Typical examples of striped configurations with regular distribution (a) and diagonal charge planes with an incomplete
chessboard structure (b) obtained for U = 1 and L = 6 × 6 × 6.

the chessboard structure starts to develop. As illustrated
in Figure 3a the f -electrons begin to occupy preferably
the sites of sublattice A, leaving the sublattice B free of
f -electrons. In addition, the configurations that can be
considered as mixtures of previous configuration types are
also observed in this region (see Fig. 3b). However, with
increasing Nf the configurations of chessboard type be-
come dominant. Analysing these configurations we have
found that the transition to the purely chessboard config-
uration realizes through several steps. The first step, the
formation of the chessboard structure has been illustrated
in Figure 3a. The second step is shown in Figure 4a. It
is seen that the chessboard structure is fully developed in
some regions (planes) that are separated by planes with
incomplete developed chessboard structure. Such a type
of distribution is replaced for larger values of Nf by a
new type of distributions (step three), where both regions
with complete and incomplete chessboard structure have
the three-dimensional character (see Fig. 4b).

The same picture we have observed also for interme-
diate values of Coulomb interactions (U = 2). The larger
values of U only slightly modify the stability regions of
some phases, but no new configuration types appear. In
particular, the domain of phase segregation, as well as
the domain of stripes formation are reduced while the
domain of diagonal planes with chessboard structure in-
creases. This trend is observed also for larger values of

U . In the strong coupling limit (U = 8) the phase segre-
gated and striped phases absent and the region of stability
the diagonal planes extends to relatively small values of
Nf ∼ 20. Below this value a homogeneous distribution
of f -electrons is observed. Thus we can conclude that all
fundamental results found in one and two-dimensional so-
lutions of the FKM (the phase segregation, the stripes
formation, the phase separation, etc.) holds also in three
dimensions, thereby the FKM becomes interesting for a
description of ground-state properties (e.g., valence and
metal-insulator transitions induced by doping and pres-
sure) of real (three dimensional) systems [12]. The work
in this direction is currently in progress.

In summary, the ground-state properties of the three-
dimensional FKM were examined by a well-controlled nu-
merical method. The results obtained were used to cate-
gorize the ground-state configurations according to com-
mon features for weak (U = 1), intermediate (U = 2) and
strong interactions (U = 8). It was shown that only a few
configuration types form the basic structure of the phase
diagram in the nf − U plane. In particular, the largest
regions of stability correspond to phase segregated con-
figurations, striped configurations and configurations in
which electrons are distributed in diagonal planes with in-
complete chessboard structure. Near half-filling, mixtures
of two phases with complete and incomplete chessboard
structure were determined.
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Fig. 3. The ground state configurations for intermediate f -electron concentrations. (a) The formation of the chessboard struc-
ture. (b) The examples of ground-state configurations that can be considered as mixtures of configuration types with smaller
nf (U = 1, L = 6 × 6 × 6).

N  = 86 N  = 91

N  = 104N  = 93
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Fig. 4. Examples of an incomplete chessboard structure obtained for U = 1 and L = 6× 6× 6. (a) The chessboard structure is
fully developed in some regions (planes) that are separated by planes with incomplete developed chessboard structure. (b) Both
regions with complete and incomplete chessboard structure have the three-dimensional character.
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